Abstract
COVID-19 pandemic is a global healthcare crisis with unprecedented responses and unpredictable outcomes. An important cause of hospital burden and physician burnout around the world, it acted as a catalyst for accelerated digitalization, including Artificial Intelligence. As far as diagnosis is concerned, RT-PCR represents the gold standard, but has multiple flaws, the most important of them consisting of the current validity of the investigation. A controversial alternative might be chest Computed Tomography, especially in highly affected areas, and a high number of software algorithms have been designed in order to assist this process. The purpose of this review is to present the actual stage of Artificial Intelligence development in medical imaging, by highlighting the reliability of using computers for COVID-19 pneumonia detection on chest CT. At the same time, we aim to provide insights and deduct conclusions on how the current challenges in the field can be overcome and how expectations could be calibrated in order to advance diagnostic strategies with the purpose of fighting a healthcare crisis.
References
“World Health Organization. (2020, March 11). WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. Retrieved from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-c.” https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed Aug. 17, 2020).
N. Zhu et al., “A novel coronavirus from patients with pneumonia in China, 2019,” N. Engl. J. Med., vol. 382, no. 8, pp. 727–733, Feb. 2020, doi: 10.1056/NEJMoa2001017.
A. E. Gorbalenya et al., “The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2,” Nature Microbiology, vol. 5, no. 4. Nature Research, pp. 536–544, Apr. 01, 2020, doi: 10.1038/s41564-020-0695-z.
A. Haleem, M. Javaid, and R. Vaishya, “Effects of COVID-19 pandemic in daily life,” Curr. Med. Res. Pract., vol. 10, no. 2, pp. 78–79, Mar. 2020, doi: 10.1016/j.cmrp.2020.03.011.
V. M. Corman et al., “Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR,” Eurosurveillance, vol. 25, no. 3, Jan. 2020, doi: 10.2807/1560-7917.ES.2020.25.3.2000045.
E. Ortiz-Prado et al., “Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review,” Diagnostic Microbiology and Infectious Disease, vol. 98, no. 1. Elsevier Inc., p. 115094, Sep. 01, 2020, doi: 10.1016/j.diagmicrobio.2020.115094.
G. Pascarella et al., “COVID-19 diagnosis and management: a comprehensive review,” Journal of Internal Medicine, vol. 288, no. 2. Blackwell Publishing Ltd, pp. 192–206, Aug. 01, 2020, doi: 10.1111/joim.13091.
H. Han, Q. Luo, F. Mo, L. Long, and W. Zheng, “SARS-CoV-2 RNA more readily detected in induced sputum than in throat swabs of convalescent COVID-19 patients,” The Lancet Infectious Diseases, vol. 20, no. 6. Lancet Publishing Group, pp. 655–656, Jun. 01, 2020, doi: 10.1016/S1473-3099(20)30174-2.
Y. Li et al., “Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19,” J. Med. Virol., vol. 92, no. 7, pp. 903–908, Jul. 2020, doi: 10.1002/jmv.25786.
M. Cevik, C. G. G. Bamford, and A. Ho, “COVID-19 pandemic—a focused review for clinicians,” Clinical Microbiology and Infection, vol. 26, no. 7. Elsevier B.V., p. 842, Jul. 01, 2020, doi: 10.1016/j.cmi.2020.04.023.
“Use of chest imaging in COVID-19.” https://www.who.int/publications/i/item/use-of-chest-imaging-in-covid-19 (accessed Aug. 28, 2020).
S. Güneyli, Z. Atçeken, H. Doğan, E. Altınmakas, and K. Ç. Atasoy, “Radiological approach to COVID-19 pneumonia with an emphasis on chest CT,” Diagn. Interv. Radiol., vol. 26, no. 4, pp. 323–332, Jul. 2020, doi: 10.5152/dir.2020.20260.
F. Pan et al., “Time course of lung changes at chest CT during recovery from Coronavirus disease 2019 (COVID-19),” Radiology, vol. 295, no. 3, pp. 715–721, Jun. 2020, doi: 10.1148/radiol.2020200370.
Z. Y. Zu et al., “Coronavirus Disease 2019 (COVID-19): A Perspective from China,” Radiology, vol. 296, no. 2, pp. E15–E25, Aug. 2020, doi: 10.1148/radiol.2020200490.
A. A. Ardakani, A. R. Kanafi, U. R. Acharya, N. Khadem, and A. Mohammadi, “Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks,” Comput. Biol. Med., vol. 121, p. 103795, Jun. 2020, doi: 10.1016/j.compbiomed.2020.103795.
G. Chartrand et al., “Deep Learning: A Primer for Radiologists,” RadioGraphics, vol. 37, no. 7, pp. 2113–2131, Nov. 2017, doi: 10.1148/rg.2017170077.
E. H. Shortliffe, “Artificial Intelligence in Medicine: Weighing the Accomplishments, Hype, and Promise,” Yearb. Med. Inform., vol. 28, no. 1, pp. 257–262, Aug. 2019, doi: 10.1055/s-0039-1677891.
A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” IBM J., vol. 3, no. 3, pp. 210–229, 1959, doi: 10.1147/rd.33.0210.
M. Van Assen, S. J. Lee, and C. N. De Cecco, “Artificial intelligence from A to Z: From neural network to legal framework,” 2020, doi: 10.1016/j.ejrad.2020.109083.
U. Schmidt-Erfurth, A. Sadeghipour, B. S. Gerendas, S. M. Waldstein, and H. Bogunović, “Artificial intelligence in retina,” Progress in Retinal and Eye Research, vol. 67. Elsevier Ltd, pp. 1–29, Nov. 01, 2018, doi: 10.1016/j.preteyeres.2018.07.004.
A. S. Ahuja, “The impact of artificial intelligence in medicine on the future role of the physician,” PeerJ, vol. 2019, no. 10, 2019, doi: 10.7717/peerj.7702.
F. Pesapane, M. Codari, and F. Sardanelli, “Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine,” European Radiology Experimental, vol. 2, no. 1. Springer, p. 35, Dec. 01, 2018, doi: 10.1186/s41747-018-0061-6.
K. J. Dreyer and J. R. Geis, “When Machines Think: Radiology’s Next Frontier Dreyer and Geis,” Rev. Comment. n Annu. OrAtiOn Radiol., vol. 285, no. 3, 2017, doi: 10.1148/radiol.2017171183.
M. Kohli, L. M. Prevedello, R. W. Filice, and J. R. Geis, “Implementing Machine Learning in Radiology Practice and Research,” Am. J. Roentgenol., vol. 208, no. 4, pp. 754–760, Apr. 2017, doi: 10.2214/AJR.16.17224.
G. Choy et al., “Current Applications and Future Impact of Machine Learning in Radiology,” Radiology, vol. 288, no. 2, pp. 318–328, Aug. 2018, doi: 10.1148/radiol.2018171820.
M. P. McBee et al., “Deep Learning in Radiology,” Acad. Radiol., vol. 25, pp. 1472–1480, 2018, doi: 10.1016/j.acra.2018.02.018.
E. Klang, “Deep learning and medical imaging,” Journal of Thoracic Disease, vol. 10, no. 3. AME Publishing Company, pp. 1325–1328, Mar. 01, 2018, doi: 10.21037/jtd.2018.02.76.
U. Djuric, G. Zadeh, K. Aldape, and P. Diamandis, “Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care,” npj Precis. Oncol., vol. 1, no. 1, p. 22, Dec. 2017, doi: 10.1038/s41698-017-0022-1.
S. S. Han, M. S. Kim, W. Lim, G. H. Park, I. Park, and S. E. Chang, “Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm,” J. Invest. Dermatol., vol. 138, no. 7, pp. 1529–1538, Jul. 2018, doi: 10.1016/j.jid.2018.01.028.
S. F. Weng, J. Reps, J. Kai, J. M. Garibaldi, and N. Qureshi, “Can Machine-learning improve cardiovascular risk prediction using routine clinical data?,” PLoS One, vol. 12, no. 4, Apr. 2017, doi: 10.1371/journal.pone.0174944.
O. F. Ahmad, D. Stoyanov, and L. B. Lovat, “Human-machine collaboration: Bringing artificial intelligence into colonoscopy,” Frontline Gastroenterology, vol. 10, no. 2. BMJ Publishing Group, pp. 198–199, 2019, doi: 10.1136/flgastro-2018-101047.
K. P. Smith, A. D. Kang, and J. E. Kirby, “Automated interpretation of blood culture gram stains by use of a deep convolutional neural network,” J. Clin. Microbiol., vol. 56, no. 3, Mar. 2018, doi: 10.1128/JCM.01521-17.
Y. Yuan et al., “Deepgene: An advanced cancer type classifier based on deep learning and somatic point mutations,” BMC Bioinformatics, vol. 17, no. Suppl 17, Dec. 2016, doi: 10.1186/s12859-016-1334-9.
A. Zhavoronkov, Q. Vanhaelen, and T. I. Oprea, “Will Artificial Intelligence for Drug Discovery Impact Clinical Pharmacology?,” Clin. Pharmacol. Ther., vol. 107, no. 4, pp. 780–785, Apr. 2020, doi: 10.1002/cpt.1795.
N. Mirchi, V. Bissonnette, R. Yilmaz, N. Ledwos, A. Winkler-Schwartz, and R. F. Del Maestro, “The virtual operative assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine,” PLoS One, vol. 15, no. 2, 2020, doi: 10.1371/journal.pone.0229596.
M. L. Giger, H. P. Chan, and J. Boone, “Anniversary paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM,” Medical Physics, vol. 35, no. 12. John Wiley and Sons Ltd, pp. 5799–5820, 2008, doi: 10.1118/1.3013555.
R. A. Castellino, “Computer aided detection (CAD): An overview,” Cancer Imaging, vol. 5, no. 1. BioMed Central, pp. 17–19, 2005, doi: 10.1102/1470-7330.2005.0018.
M. Alhajeri and S. G. S. Shah, “Limitations in and Solutions for Improving the Functionality of Picture Archiving and Communication System: an Exploratory Study of PACS Professionals’ Perspectives,” J. Digit. Imaging, vol. 32, no. 1, pp. 54–67, Feb. 2019, doi: 10.1007/s10278-018-0127-2.
M. Harris et al., “A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis,” PLoS One, vol. 14, no. 9, 2019, doi: 10.1371/journal.pone.0221339.
V. Roblot et al., “Artificial intelligence to diagnose meniscus tears on MRI,” Diagn. Interv. Imaging, vol. 100, no. 4, pp. 243–249, Apr. 2019, doi: 10.1016/j.diii.2019.02.007.
X. W. Liang, Y. Y. Cai, J. S. Yu, J. Y. Liao, Z. Y. Chen, and N. N. Wang, “Update on thyroid ultrasound: A narrative review from diagnostic criteria to artificial intelligence techniques,” Chinese Medical Journal, vol. 132, no. 16. Lippincott Williams and Wilkins, pp. 1974–1982, Aug. 20, 2019, doi: 10.1097/CM9.0000000000000346.
A. Rodriguez-Ruiz et al., “Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study,” Eur. Radiol., vol. 29, no. 9, pp. 4825–4832, Sep. 2019, doi: 10.1007/s00330-019-06186-9.
L. Q. Zhou et al., “Artificial intelligence in medical imaging of the liver,” World J. Gastroenterol., vol. 25, no. 6, pp. 672–682, 2019, doi: 10.3748/wjg.v25.i6.672.
D. Świetlik and J. Białowąs, “Application of artificial neural networks to identify Alzheimer’s disease using cerebral perfusion SPECT data,” Int. J. Environ. Res. Public Health, vol. 16, no. 7, Apr. 2019, doi: 10.3390/ijerph16071303.
N. Nasrullah, J. Sang, M. S. Alam, M. Mateen, B. Cai, and H. Hu, “Automated lung nodule detection and classification using deep learning combined with multiple strategies,” Sensors (Switzerland), vol. 19, no. 17, Sep. 2019, doi: 10.3390/s19173722.
Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, “Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions,” Journal of Digital Imaging, vol. 30, no. 4. Springer New York LLC, pp. 449–459, Aug. 01, 2017, doi: 10.1007/s10278-017-9983-4.
J. Gregory, S. Welliver, and J. Chong, “Top 10 Reviewer Critiques of Radiology Artificial Intelligence (AI) Articles: Qualitative Thematic Analysis of Reviewer Critiques of Machine Learning/Deep Learning Manuscripts Submitted to JMRI,” J. Magn. Reson. Imaging, vol. 52, no. 1, pp. 248–254, Jul. 2020, doi: 10.1002/jmri.27035.
S. H. Park and H. Y. Kressel, “Connecting Technological Innovation in Artificial Intelligence to Real-world Medical Practice through Rigorous Clinical Validation: What Peer-reviewed Medical Journals Could Do,” J. Korean Med. Sci., vol. 33, no. 22, May 2018, doi: 10.3346/jkms.2018.33.e152.
Q. Waymel, S. Badr, X. Demondion, A. Cotten, and T. Jacques, “Impact of the rise of artificial intelligence in radiology: What do radiologists think?,” Diagn. Interv. Imaging, vol. 100, no. 6, pp. 327–336, Jun. 2019, doi: 10.1016/j.diii.2019.03.015.
M. A. Mazurowski, “Artificial Intelligence in Radiology: Some Ethical Considerations for Radiologists and Algorithm Developers,” Academic Radiology, vol. 27, no. 1. Elsevier USA, pp. 127–129, Jan. 01, 2020, doi: 10.1016/j.acra.2019.04.024.
R. De’, N. Pandey, and A. Pal, “Impact of digital surge during Covid-19 pandemic: A viewpoint on research and practice,” Int. J. Inf. Manage., 2020, doi: 10.1016/j.ijinfomgt.2020.102171.
Z. Yang et al., “Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions,” J. Thorac. Dis., vol. 12, no. 3, pp. 165–174, Mar. 2020, doi: 10.21037/jtd.2020.02.64.
T. P. Mashamba-Thompson and E. D. Crayton, “Blockchain and artificial intelligence technology for novel coronavirus disease-19 self-testing,” Diagnostics, vol. 10, no. 4. MDPI AG, 2020, doi: 10.3390/diagnostics10040198.
K. Murphy et al., “COVID-19 on the Chest Radiograph: A Multi-Reader Evaluation of an AI System,” Radiology, vol. 296, no. 3, p. 201874, May 2020, doi: 10.1148/radiol.2020201874.
X. Jiang et al., “Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity,” Comput. Mater. Contin., vol. 63, no. 1, pp. 537–551, Mar. 2020, doi: 10.32604/cmc.2020.010691.
J. Stebbing et al., “COVID-19: combining antiviral and anti-inflammatory treatments,” The Lancet Infectious Diseases, vol. 20, no. 4. Lancet Publishing Group, pp. 400–402, Apr. 01, 2020, doi: 10.1016/S1473-3099(20)30132-8.
Y. Y. Ke et al., “Artificial intelligence approach fighting COVID-19 with repurposing drugs,” Biomed. J., May 2020, doi: 10.1016/j.bj.2020.05.001.
D. K. W. Chu et al., “Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia,” Clin. Chem., Jan. 2020, doi: 10.1093/clinchem/hvaa029.
T. Phan, “Genetic diversity and evolution of SARS-CoV-2,” Infect. Genet. Evol., vol. 81, p. 104260, Jul. 2020, doi: 10.1016/j.meegid.2020.104260.
Z. Shen et al., “Genomic diversity of SARS-CoV-2 in Coronavirus Disease 2019 patients,” Clin. Infect. Dis., Jul. 2020, doi: 10.1093/cid/ciaa203.
L. J. Carter et al., “Assay Techniques and Test Development for COVID-19 Diagnosis,” ACS Cent. Sci., vol. 6, no. 5, pp. 591–605, May 2020, doi: 10.1021/acscentsci.0c00501.
H. Feng, Y. Liu, M. Lv, and J. Zhong, “A case report of COVID-19 with false negative RT-PCR test: necessity of chest CT,” Jpn. J. Radiol., vol. 38, no. 5, pp. 409–410, May 2020, doi: 10.1007/s11604-020-00967-9.
D. Li et al., “False-negative results of real-time reverse-transcriptase polymerase chain reaction for severe acute respiratory syndrome coronavirus 2: Role of deep-learning-based ct diagnosis and insights from two cases,” Korean J. Radiol., vol. 21, no. 4, pp. 505–508, Apr. 2020, doi: 10.3348/kjr.2020.0146.
L. Da Chen et al., “A COVID-19 patient with multiple negative results for PCR assays outside Wuhan, China: a case report,” BMC Infect. Dis., vol. 20, no. 1, p. 517, Jul. 2020, doi: 10.1186/s12879-020-05245-7.
M. Prokop et al., “CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19-Definition and Evaluation,” Radiology, vol. 296, no. 2, pp. E97–E104, Aug. 2020, doi: 10.1148/radiol.2020201473.
T. Ai et al., “Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases,” Radiology, vol. 296, no. 2, pp. E32–E40, Aug. 2020, doi: 10.1148/radiol.2020200642.
C. Long et al., “Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?,” Eur. J. Radiol., vol. 126, p. 108961, May 2020, doi: 10.1016/j.ejrad.2020.108961.
Z. Wen et al., “Coronavirus Disease 2019: Initial Detection on Chest CT in a Retrospective Multicenter Study of 103 Chinese Subjects,” Radiol. Cardiothorac. Imaging, vol. 2, no. 2, p. e200092, Apr. 2020, doi: 10.1148/ryct.2020200092.
Y. Fang et al., “Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR,” Radiology, vol. 296, no. 2, pp. E115–E117, Aug. 2020, doi: 10.1148/radiol.2020200432.
H. X. Bai et al., “Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT,” Radiology, vol. 296, no. 2, pp. E46–E54, Aug. 2020, doi: 10.1148/radiol.2020200823.
S. Inui et al., “Chest CT Findings in Cases from the Cruise Ship ‘Diamond Princess’ with Coronavirus Disease 2019 (COVID-19),” Radiol. Cardiothorac. Imaging, vol. 2, no. 2, p. e200110, Apr. 2020, doi: 10.1148/ryct.2020200110.
Q. Ni et al., “A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images,” Eur. Radiol., pp. 1–11, Jul. 2020, doi: 10.1007/s00330-020-07044-9.
M. P. Belfiore et al., “Artificial intelligence to codify lung CT in Covid-19 patients,” Radiol. Medica, vol. 125, no. 5, pp. 500–504, May 2020, doi: 10.1007/s11547-020-01195-x.
T. Yan, P. K. Wong, H. Ren, H. Wang, J. Wang, and Y. Li, “Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans,” Chaos, Solitons and Fractals, vol. 140, p. 110153, Nov. 2020, doi: 10.1016/j.chaos.2020.110153.
X. Wu et al., “Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study,” Eur. J. Radiol., vol. 128, p. 109041, Jul. 2020, doi: 10.1016/j.ejrad.2020.109041.
K. Zhang et al., “Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography,” Cell, vol. 181, no. 6, pp. 1423-1433.e11, Jun. 2020, doi: 10.1016/j.cell.2020.04.045.
B. P. Little et al., “Artificial intelligence-enabled rapid diagnosis of patients with COVID-19,” doi: 10.1038/s41591-020-0931-3.
H. X. Bai et al., “AI Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Etiology on Chest CT,” Radiology, p. 201491, Apr. 2020, doi: 10.1148/radiol.2020201491.
D. Singh, V. Kumar, Vaishali, and M. Kaur, “Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks,” Eur. J. Clin. Microbiol. Infect. Dis., vol. 39, no. 7, pp. 1379–1389, Jul. 2020, doi: 10.1007/s10096-020-03901-z.
S. Yang et al., “Deep learning for detecting corona virus disease 2019 (COVID-19) on high-resolution computed tomography: a pilot study,” Ann. Transl. Med., vol. 8, no. 7, pp. 450–450, Apr. 2020, doi: 10.21037/atm.2020.03.132.
H. Ko et al., “COVID-19 pneumonia diagnosis using a simple 2d deep learning framework with a single chest CT image: Model development and validation,” J. Med. Internet Res., vol. 22, no. 6, Jun. 2020, doi: 10.2196/19569.
X. Xu et al., “A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia,” Engineering, Jun. 2020, doi: 10.1016/j.eng.2020.04.010.
J. Pu et al., “Any unique image biomarkers associated with COVID-19?,” Eur. Radiol., p. 1, 2020, doi: 10.1007/s00330-020-06956-w.
J. J. R. Hermans et al., “Chest CT for triage during COVID-19 on the emergency department: myth or truth?,” Emerg. Radiol., p. 1, Jul. 2020, doi: 10.1007/s10140-020-01821-1.
N. Lessmann et al., “Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence,” Radiology, p. 202439, Jul. 2020, doi: 10.1148/radiol.2020202439.
S. Wang et al., “A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis,” Eur. Respir. J., vol. 56, no. 2, p. 2000775, Aug. 2020, doi: 10.1183/13993003.00775-2020.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.