

NARRATIVE REVIEW

A REVIEW OF INNOVATION IN MEDICINE

Argyrios Periferakis^{1*}, Alexandra Bolocan^{1,2}, Daniel Ion^{1,2}

¹Carol Davila University of Medicine and Pharmacy, Bucharest, Romania ²University Emergency Hospital of Bucharest, Romania

Corresponding author Argyrios Periferakis argyrios.periferakis0920@stud.umfcd.ro

Received: 01 November 2021 Accepted: 15 November 2021 Published: 15 January 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

ABSTRACT

Medicine is inextricably linked to the notions of progress and innovation which have enabled medical practitioners to diagnose and treat successfully an ever-increasing number of pathologies. The history of innovation in medicine is marked by the development of novel drugs, of anaesthesia, of antisepsis, and of the application of new surgical methods. From the 19th century onwards, which marks the development of modern medical practices, the numerous wars in the West, contributed to the exponential emergence of new medical techniques. Today, not only new methods of therapy and diagnosis are available, but new multidisciplinary medical fields provide new insights and potential for integrative methods of prevention and therapy.

Keywords: medicine, innovation, medical technology, progress

INTRODUCTION

It is difficult to trace the emergence of medical practises in human history since even in the earliest of human societies, people must have realised the importance of the development of healing practises. The earliest evidence for human disease comes from palaeopathological investigations [1][2][3] and it can be assumed that, accordingly, primitive medical practises must have arisen from the need to treat them. It is evident that early medical practises were related to supernatural beliefs, more or less [2]. Gradually, and with the emergence of organised societies, therapeutic methods became more secular and related to natural resources, as examples from Ancient Egypt (e.g. [4][5][6]) and Greece demonstrate (eg. [7][8][9][10]). Apart from Europe, medicine also evolved in South America, where innovations such as obsidian scalpels have been discovered [11], enabling surgeries such as trephinations and craniotomies [12][13]. Meanwhile, a different form of medicine, innovative in its own way, but somewhat removed from the notions of western medicine, was developed in China [14][15] and Japan [16][17], and later transmitted to Europe [18].

As it can be seen, by the aforementioned, medicine is ever evolving, both as a science and as a healing art. Through the centuries, and via the interaction between different medical beliefs and the accumulated efforts of individuals and research groups alike, medicine has moved forward, in a succession of innovation and application. It is the purpose of this article to illustrate how landmark innovations have transformed irrevocably for the best, the face of medicine, endowing it with a diagnostic and therapeutic potential, which allows for the identification and treatment of an ever-increasing number of pathologies. The focus of this article will be on western medicine, which is more reliant on technologyrelated innovation, and as such I will not delve into details pertaining on the advances in traditional medicine systems.

MATERIAL AND METHODS

In order to maintain a concise approach, taking into account the centuries-long history of medical innovation, I will present only such innovations made after the 19th century, which is widely held to signify the emergence of modern medicine and associated medical practises [19],

Technology and Innovation in Life Sciences Page 42 ISSN: 2821-6792 Vol. 1, No. 1, 2022

with the gradual appearance of modern concepts on the causes of diseases and on the courses of treatment, such as the theories of Schwann (e.g. [20][21][22]), Koch (e.g. [23][24]) and Pasteur (e.g. [25][26]), to name but a few.

I will divide the innovations in two categories, based on their nature: innovations in therapy and innovations in medical technology. Regarding innovations in therapy, I will include in this category all such advances which contributed to the improvement of treatment (e.g. antisepsis, new surgical methods). Innovations in medical technology will deal with the advances in technology which had a direct impact on medicine (e.g. development X-Rays, development of Anger camera). It is of course impossible, even to delineate, let alone analyse, the entirety of medical innovations, which occurred in the two centuries of interest, but my aim is to present the most representative landmarks, enabling the reader to follow seamlessly the path which shaped modern medicine.

RESULTS AND DISCUSSIONS

Innovations in therapy

Regarding therapy, the development of new pharmaceutical drugs must be considered as one of the catalysts of revolutionising medical care. Prior to the 19th century, there were medicinal substances, based on plant extracts, which cannot, however, be considered drugs, in the modern sense [27]. It can be argued that the development of modern chemistry, pioneered by Lavoisier [28] enabled the introduction of chemical methods in drug discovery. Following advances by numerous scientists, and the application of the principles proposed by Gay-Lussac and von Liebig [29], chemical methods were used in biological research by Bernard, Virchow and Pasteur [27]. Pharmacology became gradually a distinct discipline, owing to the work of Magendie and others [27]. Morphine was isolated in 1817 [30], and this is considered a landmark in the development of painkillers. It spurred further research in the field of opioids, which also lead to the identification of the endogenous opioids of the human body [31]. Meanwhile, Eichengrün, in the towards the end of the 19th century, synthesised acetylsalicylic acid, commonly known today as aspirin, and introduced it in medical practise [32]. Other advances of the century included the appearance of drugs for treating cardiovascular pathologies, like digitalis [33] and nitroglycerin [34][35].

The other major landmark research pertains to the development of antimicrobial agents. Up until the 20th century, the main measure used to prevent microbial infections was sanitation and disinfection of wounds [27]. In the 1910s, Salvarsan, also known as compound

606, was produced in Germany [36] and marked the beginning of the end for syphilis, which, up until then had been debilitating and uncurable. The first sulphonamide drug, Prontosil, appeared in 1932 [36], and was the firstever medicine which could treat a wide range of infections inside the human body. Meanwhile, in 1928, Fleming had discovered penicillin, isolated from mould [27] which was developed into a functional antibiotic by Florey and Chain [37]. From the second half of the 20th century onwards, a host of discoveries of new drugs followed, along with improvements in the manufacturing of already existing compounds. Gradually, diseasespecific drugs began to enter standard medical practise, revolutionising and reforming medical practise and exponentially increasing the courses of treatment available.

As mentioned before, after the 19th century, there were marked innovations in surgical methods. Amidst all the fields of medicine, surgery is more dependent on innovations, oftentimes from sole pioneering surgeons. In addition, the true flourishing of surgery occurred once efficient methods of avoiding pain and infection had been developed [2]. Early anaesthesia was performed both locally and generally [38]. As happened in many fields, so too in medicine, war was a major impetus in the development of anaesthesiology and surgery. During the American Civil War, the sheer number of casualties necessitated a great deal of medical attention [39]. By the end of the War there was a marked advance in the use of anaesthesic agents and in the understanding of their benefits and side effects [40]. Gradually, and following the Franco-Prussian War, chloroform was also employed, along with the introduction of inhalers, to facilitate the administration of anaesthesia (e.g. [41][42]). Gradually, owing in part to the First World War too, surgical anaesthesia continued to develop, eventually crossing over to the field of civilian medicine, shaping the modern aspect of anaesthesiology. Semmelweis and subsequently Lister, introduced antiseptic methods [43], thus greatly reducing the death of patients after surgeries, which was a result not of postoperative complication but of infections. Apart from the anaesthesia, the development of drugs to combat pain, greatly benefitted post-operative recovery, along with antibiotics which minimised the effect of potential infections. Finally, the development of X-rays and other imaging techniques, which will be presented in the next chapter, enabled both pre-operative and post-operative visualisation of the pathology, facilitating a more accurate and localised surgical intervention.

Innovations in medical technology

Perhaps one of the most well-known innovations is the development of X-rays, by Röntgen in 1895 [44], which sparked the development of medical radiology and in 1896 the first radiological imaging device was used [45]. Soon enough, the dangers inherent in the use of ionising radiation [46] were realised, and this was compounded by the initial technical difficulties associated with the use of the equipment. Gradually, however, and through constant adjustment, improvement and innovation, X-ray imaging became both simple and safe [47]. Based on these early applications, other methods, like real-time fluoroscopy [48] and contrast radiography [49] were also developed, and X-rays were employed in therapeutic applications [50][51].

In the field of imaging, other notable innovations include the use of y-rays for imaging and therapeutic purposes, along with the development of the MRI, based on nuclear magnetic resonance. Gamma rays are photons originating from the radioactive decay of nuclei [52] and are employed in scintigraphy imaging, where emitted y-radiation is captured by Anger cameras to create two-dimensional images of the human body [53][54]. Scintigraphy, as well as the PET scan are classified as nuclear medicine methods, and employ radiotracers, which due to the nuclear decay of their components, emit y-radiation, which when detected enables imaging. PET scans were first employed in the 1960s [55][56] and are a direct result of the application of advances in the field of nuclear physics for medical purposes. Also benefiting from advances in physics, MRI was developed in the 1970s [57][58], and subsequently improved upon, providing unique imaging capabilities, while having the added benefit of not using ionising radiation [59]. Finally, ultrasonography, better known as medical ultrasound, was developed in the early 1940s [60], and applied a few years later, taking advantage of the discovery of the phenomenon of piezoelectricity [61].

A focal point of innovation in medicine was the development of methods associated with and based on DNA. Desoxyribonucleic acid was initially isolated by Miescher in 1869, and called nuclein [62]. Further research expounded on the structure of nuclei acid and its constituting nucleotides [63] and the theories of Koltsov [64] and Griffith [65] proposed the association between heredity and DNA. In the 1930s, using X-ray crystallography methods, the first images of the structure of DNA were obtained [66]. Further experiments corroborated the early hypothesis of the DNA being the carrier of heredity [67][68]. Finally, in 1953, Watson and Crick, studying the data of previous researchers, concluded that the model of the DNA was that of the double strand [69]. A few years later, Crick described the central dogma of cell biology, and thus molecular biology was born [70].

The elucidation of the structure of DNA, and its identification as the carrier of heredity enabled, gradually, the development of recombinant DNA methods, which were subsequently employed in medicine [71][72]. Further advances in biomedical technology, enabled the development of polymerase chain reaction (PCR), which has both clinical (e.g. [73][74]) and forensic (e.g. [75][76]) applications, and of other methods, such as gene therapy [77][78] and the industrial production of proteins (e.g [79][80][81]).

Finally, one of the major advances of medical technology has been the development of vaccines. The earliest immunisation efforts, in human populations, can be traced to the process of variolation, between the 12th and the 15th centuries [82], but the emergence of vaccinology will happen much later, in 1796, owing to the efforts of Jenner [83]. While initially there were very few efficient vaccines developed, gradually, along with the aforementioned advances, and the identification of various pathogens, many vaccines against numerous diseases came into clinical practise, by the 1930s [84][85]. Following the Second World War, and the establishment of international organisations, most notably the World Health Organisation, vaccine development entered its so-called "golden era" [86]. By the 1980s, multivalent vaccines for various bacterial serotypes were also being developed [87][88]. Today, vaccination is regarded as one of the greatest triumphs of medicine [89], and its beneficial effects have been demonstrated time and again (e.g. [90][91][92]). However, even in such an effective medical practise, there are still adverse effects, in some cases (e.g. [93][94][95][96]), and the eradication of such cases, so as to ensure an absolute standard of safety, remains a future challenge for medical technology.

Conclusions

From the aforementioned, it can be seen that innovation has played a major role in medicine, especially since its transcendence from an empirical to a scientific field. Virtually every field of natural science has contributed and continues to contribute, enabling constant innovation and its application, concomitantly with the improvement of already-existing methods.

Owing to the constant drive of individuals and teams of researchers, through the utilisation of cutting-edge technology, occasionally with a bit of luck in their endeavours, medicine has come a long way, from its tentative scientific applications of the 17th and the 18th centuries. The existence of modern society rests in part upon the existence and the smooth function of organised health care systems. It is no exaggeration to claim that the western world would be very different, especially considering the numerous wars and pandemics of the

past two centuries, had medicine remained in its pre-Enlightenment stage.

Thus far, I have presented innovations pertaining to the strictly, so to speak, biomedical part of medicine. However, innovation may be also applied, as a notion, also to concepts and approaches related to or stemming from medicine. In the 21st century, interdisciplinary research has resulted in the emergence of new disciplines, such as medical geology (e.g. [97][98]), medical geography (e.g. [99][100]) and health care marketing (e.g. [101][102]) which also studies the contribution of internet to patient information and health care seeking behaviour (e.g. [103][104][105]). Finally, a notable progress has been the development of the field of psychosomatic medicine and medical psychology, which adopts a multifaceted approach to the

REFERENCES

- [1] Shufeldt RW. Notes on paleopathology. Popular Sci Mon. 1893 Mar;42:679-84.
- [2] Magner LN. A History of Medicine. 2nd ed. London: Taylor & Francis; 2005. 4, 17, 461 p.
- [3] Ortner DJ. What skeletons tell us. The story of human paleopathology. Virchows Arch. 2011 Jul;459:247-54.
- [4] Ritner RK. Innovations and Adaptions in Early Egyptian Medicine. J. Near East Stud. 2000 Apr;59(2):107-117.
- [5] Saba MM, Ventura HO, Saleh M, Mehra MR. Ancient Egyptian Medicine and the Concept of Heart Failure. J Card Fail. 2006 Aug;12(6):416-21.
- [6] Aboelsoud NH. Herbal medicine in ancient Egypt. J Med Plant Res. 2010 Jan;4(2):82-6.
- [7] Miller HW. Philosophy and Medicine in Ancient Greece. Class J. 1949 Feb;44(5), 1949, pp. 309-18.
- [8] Marketos SG, Poulakou-Rebelakou E. Traditional medicine in ancient Greece (coexistence of Asclepian art and Hippocratic medicine). Prz Lek. 1995 Jan;52(12):612-14.
- [9] Giannouli V, Syrmos M. Information about Macedonian medicine in ancient Greece. Hell J Nucl Med. 2011 Sep;14(3):324-25.
- [10] Kleisiaris CF, Sfakianakis C, Papathanasiou IV. Health care practices in ancient Greece: The Hippocratic ideal. J Med Ethics Hist Med. 2014 Mar;7(6). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263393
- [11] Marino Jr R, Gonzalles-Portillo M. 2000. Preconquest Peruvian Neurosurgeons: A Study of Inca and Pre-Columbian Trephination and the Art of Medicine in Ancient Peru. Neurosurgery. 2000 Oct;47(4):940-50.
- [12] Rifkinson-Mann S. Cranial surgery in ancient Peru. Neurosurgery. 1988 Oct;23(4):411-16.
- [13] Periferakis A. A Review of Obsidian Source

aetiology and the treatment of diseases [106][107][108][109].

To summarise, innovation has been a driving force behind medicine, and has depended upon combining different scientific disciplines, while benefiting from technological advances. While looking in the past, and at the exponential progress, achieved in a relatively short amount of time, it is reasonable to assume that medical progress will continue to provide novel and efficient solutions to pre-existing and arising problems, both in treatment and in diagnosis. However, as the ever expanding frontiers of medicines open new horizons, researchers and medical professionals must be cautious, not to digress from their therapeutic prerogative, and remain within the bounds of bioethics.

Exploitation in pre-Columbian South America. BGSG. 2019 Oct;55(1):65-108.

- [14] Ma KW. The Roots and Development of Chinese Acupuncture: From Prehistory to the Early 20th Century. Acupunct Med. 1992 Nov;10(1):92-99.
- [15] Low KCP, Ang SL. The Foundation of Traditional Chinese Medicine. J Tradit Chin Med. 2010 Dec;1:84-90.
- [16] Okabe S. Introduction to traditional Japanese acupuncture. NASOM. 1998 Jul;5(13):9-13.
- [17] Kobayashi A, Uefuji, M, Yasumo W. History and Progress of Japanese Acupuncture. Evid Based Complement Alternat Med. 2010 Sep;7(3):359-65.
- [18] Periferakis A, Periferakis K. On the Dissemination of Acupuncture to Europe. Journal NX Mul P Rev J. 2020 Jul;6(7):201-09.
- [19] Fissell ME. The disappearance of the patient's narrative and the invention of hospital medicine. In: French R, Wear A, editors. British Medicine in an Age of Reform London: Routledge Editions; 1991. p. 83-101.
- [20] Schwann T. Ueber die Analogie in der Structur und dem Wachsthum der Thiere und Pflanzen. Neue Not Geb Nat Heil 1838 Jan;5(3):34-36.
- [21] Hajdu S. Introduction of the Cell Theory. Ann Clin Lab Sci. 2002 Jan;32(1):98-100.
- [22] Parnes O. From Agents to Cells: Theodor Schwann's Research Notes of the Years 1835–1838. In: Holmes FL, Renn J, Rheinberger HJ, editors. Reworking the Bench ARIM 7. Dordrecht: Springer Editions; 2003. p. 119-40.
- [23] Tyagi JS. The timeless legacy of Robert Koch. Reson. 2006 Sep;11:20-28.
- [24] Blevins SM, Bronze MS. Robert Koch and the 'golden age' of bacteriology. Int J Infect Dis. 2010 Apr;14(9):E744-51.
- [25] Manchester KL. Louis Pasteur, fermentation, and a rival. S. Afr J Sci. 2007 Sept;103(9-10):377-380.
- [26] Berche P. Louis Pasteur, from crystals of life to vaccination. Int J Infect Dis. 2012 Oct;18(5):1-6.
- [27] Chast F. A History of Drug Discovery. In: Wermuth

- CG, editor. The Practices of Medicinal Chemistry. 3rd ed. Elsevier: Amsterdam; 2008. p. 3-62.
- [28] Perrin CE. The Chemical Revolution. In: Colby RC, Cantor GN, Christie, JRR, Hodge, MJS, editors. Companion to the History of Modern Science. Routledge: London & New York; 1990. p. 264-277.
- [29] Bensaude-Vincent B, Stengers I. Histoire de la Chimie. La Decouverte: Paris; 1993, 142 p.
- [30] Sertürner F. Ueber das Morphium, eine neue salzfähige Grundlage, und die Mekonsäure, als Hauptbestandtheile des Opiums. Ann Phys (Berl). 1817 Jan;55:56-89.
- [31] Mitchell JM, Tavares VC, Fields HL, D'Esposito M, Boetigger CA. Endogenous opioid blockade and impulsive responding in alcoholics and healthy controls. Neuropsychopharmacology. 2007 Feb;32(2):439-49.
- [32] Sneader W. The discovery of aspirin: a reappraisal. Br Med J. 2000 Dec;321(7276):1591-94.
- [33] Goldthorp WO. Medical Classics: An Account of the Foxglove and Some of its Medicinal Uses by William Withering, published 1785. Br Med J. 2009 Jun;338:b2189.
- [34] Murrell W. Nitro-glycerine as a remedy for angina pectoris. Lancet. 1879 Feb;113(2894). Available from: https://doi.org/10.1016/S0140-6736(02)42404-X
- [35] Murrell W. Nitro-Glycerine as a Remedy for Angina Pectoris. Glasgow Med J. 1882 Nov;18(5):370-371.
- [36] Otten H. Domagk and the development of the sulphonamides. J Antimicrob Chemother. 1986 Jun;17(6):689-696.
- [37] Chain E, Florey HW, Gardner, AD, Heatley NG, Jennings MA, Ewing, JO, Sanders AG. Penicillin as a chemotherapeutic agent. Lancet. 1940 Aug;236(6104):226-228.
- [38] Zimmer M. History of anaesthesia. Eur J Anaesthesiol. 2014 Jan;31(1):1-12.
- [39] Kaufman HH. Treatment of head injuries in the American Civil War. J Neurosurg. 1993 May;78(5):838-45.
- [40] Metcalfe NH. Military influence upon the development of anaesthesia from the American Civil War (1861–1865) to the outbreak of the First World War. Anaesthesia. 2005 Nov;60(12):1213-17.
- [41] Thomas KB. Ferdinand Edelbert Junker. Anaesthesia. 1973 Sep;28(5):531-34.
- [42] Metcalfe NH. The influence of the military on civilian uncertainty about modern anaesthesia between its origins in 1846 and the end of the Crimean War in 1856. Anaesthesia. 2005 Jun;60(6):594-601.
- [43] Lister J. On the Antiseptic Principle in the Practise of Surgery. Br Med J. 1867 Sep;2(351):246-48.
- [44] Frankel RI. Centennial of Röntgen's discovery of x-rays. West J Med. 1996 Jun;164(6):497-501.
- [45] Feldman A. A sketch of the technical history of

- radiology from 1896 to 1920. Radiographics. 1989 Nov;9(6):1113-28.
- [46] Mettler FA. Medical effects and risks of exposure to ionising radiation. J Radiat Prot Res. 2012 Mar;32(1):N9-13.
- [47] Kemerink M, Dierichs TJ, Dierichs J, Huynen H, Wildberger JE, van Engelshoven JMA, Kemerink GJ. The Application of X-Rays in Radiology: From Difficult and Dangerous to Simple and Safe. AJR. 2012 Apr;198(4):754-59
- [48] Schueler BA. The AAPM/RSNA physics tutorial for residents: general overview of fluoroscopic imaging. Radiographics. 2000 Jul;20(4)1115-26.
- [49] Quader MA, Sawmiller CJ, Sumpio BE. Radio Contrast Agents: History and Evolution. In: Chang JB, editor. Textbook of Angiology. Springer: New York; 2000, p. 775-783.
- [50] Kaye G. Therapeutic and other Applications of X-Rays and Gamma-Rays. Nature. 1935 May;135:724-26.
- [51] Orton CG. Uses of Therapeutic X-Rays in Medicine. Health Phys. 1995 Nov;69(5):662-76.
- [52] Rutherford L. Origin of the Gamma Rays. Nature. 1932 Mar;129:457-58.
- [53] Anger HO. Scintillation Camera. Rev Sci Instrum. 1958 Jan;29(1):27-33.
- [54] Murayama H, Hasegawa T. Hal Oscar Anger, D.Sc. (hon.) (1920–2005): a pioneer in nuclear medicine instrumentation. Radiol Phys Technol 2014 Jan;7(1-4). Available from: https://doi.org/10.1007/s12194-013-0252-z
- [55] Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975 Jan;114(1):89-98.
- [56] Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 1975 Mar;16(3):210-24.
- [57] Edelman RR. The History of MR Imaging as Seen through the Pages of Radiology. Radiology. 273(2S):S181-200.
- [58] Scatliff JH, Morris PJ. From Röntgen to Magnetic Resonance Imaging. NCMJ. 2014 Mar;75(2);111-13.
- [59] Grover VP, Tognarelli JM, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015 Sep;5(3):246-55.
- [60] Siddharth S, Goyal A. The origin of echocardiography. Tex Heart Inst J. 2007 Sep;34(4):431-38.
- [61] Manbachi A, Cobbold RSC. Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection. Ultrasound. 2011 Nov;19(4):187-96.

Technology and Innovation in Life Sciences ISSN: 2821-6792

- [62] Dahm R . Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Genetics. 2008 Jan;122(6):565-81.
- [63] Cohen JS, Portugal FH. The search for the chemical structure of DNA. Conn Med. 1974 Oct;38(10): 551-57.
- [64] Soyfer VN. The consequences of political dictatorship for Russian science. Nat Rev Genet. 2001 Sep;2(9):723-29.
- [65] Griffith F. The Significance of Pneumococcal Types. J Hygiene. 1928 Jan;27(2):113-59.
- [66] Astbury WT, Bell FO. Some recent developments in the X-ray study of proteins and related structures. Cold Spring Harb Symp Quant Biol. 1938 Jun;6:109-21.
- [67] Avery OT, Macleod CM, McCarty M. Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III. J Exp Med. 1944 Feb;79(2):137-58.
- [68] Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952 May;36(1):39-56.
- [69] Regis E. What Is Life?: investigating the nature of life in the age of synthetic biology. Oxford: Oxford University Press; 2009. 52 p.
- [70] Pray L. Discovery of DNA structure and function: Watson and Crick. Nat Educ. 2008 Jan;1(1):100.
- [71] Cederbaum SD, Fareed GC, Lovett MA, Shapiro LJ. Recombinant DNA in medicine. West J Med. 1984 Aug;141(2):210-222.
- [72] Khan S, Ullah MW, Siddique R, Nabi G, Manan S, Yousaf M, Hou H. Role of Recombinant DNA Technology to Improve Life. Int J Genomics. 2016 Dec;2405954. Available from: https://doi.org/10.1155/2016/2405954
- [73] Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of betaglobin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec;230 (4732):1350-54.
- [74] Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan;239(4839):487-91.
- [75] Chakraborty R, De Andrade M, Daiger SP, Budowle B. Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Gen. 1992 Jan;56(1):45-57.
- [76] Weusten J, Herbergs J. A stochastic model of the processes in PCR based amplification of STR DNA in forensic applications. Forensic Sci Int. 2012 Jan;6(1):17-25.
- [77] Verma IM, Naldini L, Kafri T, Miyoshi H, Takahasi M, Blömer U, Somia N, Wang L, Gage FH. 2000 Gene Therapy: Promises, Problems and Prospects. In:

- Boulyjenkov V, Berg K, Christen Y, editors. Genes and Resistance to Disease. Springer: Berlin & Heidelberg; 2000. p. 147-57.
- [78] Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013 Aug;525(2):162-69.
- [79] Comer MJ, Kearns MJ, Wahl J, Munster M, Lorenz T, Szperalski B, Koch S, Behrendt U, Brunner H. Industrial production of monoclonal antibodies and therapeutic proteins by dialysis fermentation. Cytotechnology. 1990 Jan;3:295-99.
- [80] Headon DR, Walsh G. The industrial production of enzymes. Biotechnol Adv. 1994 Apr;12(4):635-46.
- [81] Huang CJ, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol. 2012 Mar;39(3):383-99.
- [82] Leung AK. "Variolation" and vaccination in late Imperial China, Ca 1570-1911. In: Plotkin SA, editor. History of vaccine development. New York: Springer; 2011. p. 5-12.
- [83] Plotkin SA. Introduction. In: Plotkin SA, editor. History of vaccine development. New York: Springer; 2011. p. 1-4.
- [84] Wever PC, van Bergen L. Prevention of tetanus during the First World War. Med Humanit. 2012 Dec;38(2):78-82.
- [85] Malito E, Rappuoli R. History of diphtheria vaccine development. In: Burkovski A, editor. Corynebacterium diphtheriae and related toxigenic species: genomics, pathogenicity and applications. Dordrecht: Springer; 2014. p. 225-38.
- [86] Plotkin SA, Plotkin SL. The development of vaccines: how the past led to the future. Nat Rev Microbiol. 2011 Oct;9:889-93.
- [87] Fitzwater SP, Chandran A, Santosham M, Johnson HL. The worldwide impact of the seven-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J. 2012 May;31(5):501-08.
- [88] Tan LK, Carlone GM, Borrow R. Advances in the development of vaccines against Neisseria meningitidis. N Engl J Med. 2010 Apr;362:1511-20.
- [89] Han S. Clinical vaccine development. Clin Exp Vaccine Res. 2015 Jan;4:46-54.
- [90] Vaugelade J, Pinchinat S, Guiella G, Elguero E, Simondon F. Non-specific effects of vaccination on child survival: prospective cohort study in Burkina Faso. BMJ. 2004 Sep;329:1309. Available from: https://doi.org/10.1136/bmj.38261.496366.82
- [91] Goodridge H, Ahmed S, Curtis N., Kollmann TR, Levy O, Netea MG, Pollard AJ, van Crevel R, Wilson CB. Harnessing the beneficial heterologous effects of vaccination. Nat Rev Immunol. 2016 May;16:392-400.
- [92] Fountoulaki K, Tsiodras S, Polyzogopoulou E, Olympios C, Parissis J. Beneficial Effects of Vaccination on

Technology and Innovation in Life Sciences ISSN: 2821-6792

Cardiovascular Events: Myocardial Infarction, Stroke, Heart Failure. Cardiology. 2018 Nov;141(2):98-106.

[93] Tishler M, Shoenfeld Y. Vaccination may be associated with autoimmune disease. IMAJ. 2004 Jul;6(7):430-32.

[94] Orbach H, Agmon-Levin N, Zandman-Goddard G. Vaccines and Autoimmune Diseases of the Adult. Discov Med. 2010 Feb;9(45)90-97.

[95] Brinth LS, Pors K, Theibel AC, Mehlsen J. Orthostatic intolerance and postural tachycardia syndrome as suspected adverse effects of vaccination against human papilloma virus. Vaccine. 2015 May;33(22):2602-05.

[96] Ozawa, K., Hineno, A., Kinoshita, T. Ishihara S, Ikeda S. Suspected Adverse Effects After Human Papillomavirus Vaccination: A Temporal Relationship Between Vaccine Administration and the Appearance of Symptoms in Japan. Drug Saf. 2017 Dec;40:1219-29.

[97] Bunnell GE, Finkelman RB, Centeno JA, Selinus O. Medical geology: a globally emerging discipline. Geol Act. 2007 Mar;5(3):273-81.

[98] Davies BE, Bowman C, Davies T.C., Selinus O. Medical Geology: Perspectives and Prospects. In: Selinus O, editor. Essentials of Medical Geology. Springer: Dordrecht; 2013. p. 1-13.

[99] Jones K, Moon G. Medical geography: taking space seriously. Prog Hum Geogr. 1993 Dec;17(4):515-24.

[100] Kearns RA, Joseph AE. Space in its place: Developing the link in medical geography. Soc. Sci. Med. 1993 Sep;37(6):711-17.

[101] Petrescu CM, Gheorghe IR, Petrescu GD. Optimizing the technological and informational relationship of the health care process and of the communication between physician and patient. The impact of Preventive Medicine and social marketing applied in Health Care on youth awareness - preliminary study. J Med Life. 2011 Jan;4(1):112-23.

[102] Purcarea VL, Petrescu DG, Gheorghe IR, Petrescu CM. Optimizing the technological and informational relationship of the health care process and of the communication between physician and patient - factors that have an impact on the process of diagnosis from the physician's and the patient's perspectives. J Med Life. 2011 May 15;4(2):198-206.

[103] Gheorghe IR, Liao MN. Investigating Romanian Healthcare Consumer Behaviour in Online Communities: Qualitative Research on Negative eWOM. Procedia Soc Behav Sci. 2012 Oct;62:268-74.

[104] Bratucu R, Gheorghe IR, Purcarea RM, Gheorghe CM, Popa Velea O, Purcarea VL. Cause and effect: the linkage between the health information seeking behavior and the online environment - a review. J Med Life. 2014 Sep 15;7(3):310-6

[105] Radu G, Solomon M, Gheorghe CM, Hostiuc M, Bulescu IA, Purcarea VL. The adaptation of health care marketing to the digital era. J Med Life. 2017 Jan;10(1):44-46.

[106] Popa-Velea O, Purcarea VL. Issues of therapeutic communication relevant for improving quality of care. J Med Life. 2014 Jan;7(4):39-45.

[107] Ioana C, Diaconescu L, Popa-Velea O. Psychological variables correlated with the onset of psychosomatic symptoms in youngsters. J Psychosom Res. 2014 Jun;76(6):500.

[108] Popa-Velea O, Purcarea VL. Psychological intervention – a critical element of rehabilitation in chronic pulmonary diseases. J Med Life. 2014 Jun;7(2):274-81.

[109] Popa-Velea O, Bubulac L, Petrescu L, Purcarea RM. Psychopathology and psychotherapeutic intervention in diabetes: particularities, challenges, and limits. J Med Life. 2016 Oct;9(4):328-33.

Technology and Innovation in Life Sciences ISSN: 2821-6792