

RESEARCH ARTICLE

PROGNOSTIC VALUE OF CARDIOPULMONARY EXERCISE TESTING AND EXERCISE ECHOCARDIOGRAPHY IN SUSPECTED HEART FAILURE WITH PRESERVED EJECTION FRACTION

Ileana Monica Stoian¹, Alexandru Scafa-Udriște^{1,2}, Oana Nastasie¹, Maria Dorobanțu²

¹ Emergency Clinical Hospital, Bucharest, Romania ² Carol Davila University of Medicine and Pharmacy, Bucharest, Romania

Corresponding author Alexandru Scafa-Udriște alexandru.scafa@umfcd.ro

Received: 01 November 2024 Accepted: 15 November 2024 Published: 15 December 2024

ABSTRACT

Heart Failure with preserved Ejection Fraction (HFpEF) is a complex syndrome with a rising prevalence due to the aging population and a reserved prognosis. Early pathological changes may not be noticeable at rest but can be identified through exercise stress testing. The combination of CPET and exercise stress echocardiography (ESE) could provide important insights for early diagnosis and risk stratification. Sixty-six patients with chronic exertional dyspnea and suspected HFpEF were included in the study. They underwent symptom-limited combined CPET with ESE and were monitored for cardiac decompensation for 12 to 18 months. Twenty-six patients (39% of the cohort) experienced cardiac decompensation during this period. Several resting and ESE parameters, along with most CPET parameters, demonstrated predictive value, for identifying cardiac decompensations in the studied population, as determined by linear regression analysis. Due to the high number of predictors and their correlations, Lasso regression was applied to address multicollinearity. After Lasso analysis, only three parameters remained significantly associated with cardiac decompensation: exercise E/e' ratio, exercise left atrial (LA) strain, and maximum work rate. The model, including all three key predictors, achieved 87.87% accuracy, 63.63% sensitivity, and 100% specificity. ESE is a useful tool in evaluating prognosis and risk stratification of patients with chronic exertional dyspnea and suspected HFpEF. The addition of the novel parameter, exercise LA strain, enhanced the predictive value of the classic echocardiographic parameter, E/e' ratio at effort. Although CPET parameters showed some predictive potential, the added benefit of incorporating CPET remains limited in the early stages of HFpEF.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Keywords: cardiopulmonary exercise testing, exercise echocardiography, heart failure

INTRODUCTION

Heart Failure with preserved Ejection Fraction (HFpEF) is a complex and heterogeneous syndrome, whose prevalence is increasing due to an aging population (1–3). Despite a preserved left ventricular ejection fraction (LVEF), HFpEF patients experience significant morbidity and mortality, with prognoses

comparable to heart failure with reduced ejection fraction (HFrEF), particularly regarding hospitalizations and mortality (4–6). A key characteristic, exercise intolerance, is strongly associated with poor outcomes, with reduced exercise capacity linked to higher rates of hospitalization and cardiovascular events (7).

Pathological changes in early-stage HFpEF may be inapparent at rest but become evident during

physical exertion, thus underscoring the value of exercise stress testing (8–11). A recent study by Saito et al. reinforced this observation, demonstrating that exercise stress testing- particularly combining cardiopulmonary exercise testing (CPET) and exercise stress echocardiography (CPET-ESE) can effectively identify HFpEF patients, enabling risk stratification in those with chronic exertional dyspnea, and revealing comparable risk profiles to those diagnosed using resting evaluations (12).

This combined CPET-ESE approach provides a comprehensive assessment of exercise capacity, ventilatory efficiency, and cardiac function, offering valuable prognostic information for patients suspected of having HFpEF (12–15).

Our study aimed was to identify echocardiographic (at rest and during exercise) and CPET predictors of cardiac decompensations in patients with chronic exertional dyspnea, suspected of having HFPEF.

MATERIAL AND METHODS

We conducted a prospective, observational, non-randomized study between 2018-2020 and 2022-2024, involving patients suspected of having HFpEF, based on clinical symptoms and transthoracic echocardiography (TTE), who were either hospitalized or admitted for day hospitalization at the Emergency Clinical Hospital Bucharest .The inclusion criteria were patients over 18 years of age who presented with exertional dyspnea and showed an indeterminate or normal pattern after diastolic dysfunction assessment, according to the 2016 guidelines for LV diastolic function by the American Society of Echocardiography (ASE) and the European Association of Cardiovascular Imaging (EACVI).(16) Additionally, all enrolled patients provided written informed consent, had a preserved left ventricular ejection fraction (LVEF ≥50%) and were able to perform a maximal exercise test with gas exchange analysis. Exclusion criteria were: prior diagnosis of HF, NT-proBNP ≥125 pg/mL, significant valvular disease (defined as at least moderate to severe regurgitation or mild stenosis), significant coronary artery disease, arrhythmia other than sinus rhythm (SR) at the time of study enrollment, recent pulmonary embolism, known aortic dissection or aneurysm >50 mm, severe chronic kidney disease [glomerular filtration rate (GFR) <30 mL/min/1.73 m²], or other conditions contributing to dyspnea [including at least moderate respiratory conditions or significant anemia with hemoglobin (Hb) <10 g/dL].

A complete TTE, focused on diastolic dysfunction (DD) evaluation in accordance with

ASE/EACVI guidelines, was performed on all subjects upon enrollment. The following parameters with the corresponding cut-off values were assessed: average E/e' > 14, septal e' velocity < 7 cm/s or lateral e' velocity < 10 cm/s, peak tricuspid regurgitation velocity (TRV) > 2.8 m/s, and left atrium volume index (LAVI) > 34 mL/m². (16) Patients with an indeterminate-normal pattern (50% of parameters abnormal or <50% of parameters abnormal) were included.

The patient's age, weight, height, and medical history (including comorbidities and medications) were recorded. Complete blood tests, as recommended in the HF guidelines, including NT-proBNP, and an electrocardiogram were performed at enrollment. Echocardiography:

The Vivid E95 ultrasound system (GE Vingmed Ultrasound, Horten, Norway) was used at rest and during exercise, with data stored digitally (5 consecutive cardiac cycles in cine-loop format) and analyzed using EchoPAC software, version 112 (GE Vingmed Ultrasound). Echocardiographic parameters were measured according to current guidelines (16–18).

Left atrial (LA) strain - reservoir function was assessed both at rest and during exercise according to the EACVI/ASE guidelines (18). It was calculated from apical 4- and 2-chamber views as the average peak positive longitudinal strain during LA relaxation across all 12 segments. Apical views were optimized to avoid foreshortening, with a frame rate >50 fps, and the QRS onset was used as the time reference point. During exercise LA-strain was analyzed at 50% of peak oxygen uptake (peak VO2).

Additionally, echocardiographic parameters measured at rest and during exercise included: early (E) and late (A) diastolic transmitral flow velocities, deceleration time (Doppler echocardiography), peak early mitral annulus velocities (e'- averaged from septal and lateral e', tissue Doppler measurements), LVEF (2D biplane Simpson method), systolic tricuspid lateral annular velocity (S'T- tissue Doppler), peak TRV (continuous Doppler), and estimated pulmonary artery systolic pressure (PASP, calculated as $4 \times TRV + right$ atrial (RA) pressure). Exercise RA pressure was assumed to be 10 mm Hg, as suggested by previous studies (19). E/e' and S'T/PASP ratios were calculated at rest and peak.

The intraobserver and interobserver variability for echocardiographic measurements were both < 10%, based on a sample size of 20 subjects.

Cardiopulmonary exercise test

A symptom-limited cardiopulmonary exercise test (CPET), performed simultaneously with exercise echocardiography, was conducted on a tiltable cycle

ergometer for all participants. An individualized ramp protocols designed to achieve the patient's estimated peak oxygen consumption (peak VO2) in 8–12 min was used. This included 2 minutes of unloaded pedaling, followed by 8-15 W/min load increments, and a recovery period of 5 minutes. Expiratory gases were collected on a breath-by-breath basis and analyzed using a Cortex Metalyzer 3B metabolic device (Cortex Biophysik GmbH, Germany). Spirometry was conducted for all patients prior to the test, and all exhibited results within normal limits or minimal changes without clinical significance.

Peak VO2 and the peak respiratory exchange ratio (RER) were expressed as the highest 10 second averaged sample obtained during the final 30 seconds of effort. An RER ≥ 1.05 at the end of the test was considered to indicate the achievement of maximal effort. The ventilatory anaerobic threshold (VAT) was determined using the V-slope analysis on VO2 versus carbon dioxide production (VCO2), and further verified using ventilatory equivalents and end-tidal partial pressure methods, VAT was expressed in I/min. Peak VO2 values were expressed in ml/kg/min or as a percentage of the predicted peak VO2 based on age, sex, and body dimensions, according to the equations proposed by Wasserman and Hansen (20). O2 pulse was determined, as the ratio of VO2 to heart rate (HR). The slope of the relationship between minute ventilation (VE) and carbon dioxide production (VCO2)-VE/VCO2 slope, was calculated using linear regression, based on all exercise data (initiation to peak effort). The oxygen uptake efficiency slope (OUES) was determined as the slope of the regression line between the logarithmically transformed ventilatory equivalent for oxygen (VE) on the x-axis and oxygen consumption (VO2) on the y-axis during exercise. The HR reserve was calculated as the difference between the maximum predicted HR (220-age) and the peak HR. Circulatory power (CP), a surrogate for cardiac power (cardiac output × mean arterial pressure- invasive assessment), was determined as the product of peak VO2 and peak systolic blood pressure, as previously proposed by other researchers (21).

Patients were monitored for 12-18 months. Cardiac decompensation events prompted comprehensive clinical, biological, ECG, and echocardiographic evaluations. Patients without decompensation also underwent a final evaluation at the end of the follow-up period.

Cardiac decompensation was defined as the occurrence of any of the following events: worsening HF symptoms requiring medications adjustment (including loop diuretics), with confirmation of HFpEF; hospitalization for HF; new-onset atrial fibrillation or

flutter (EHRA II–IV classification); or cardiovascular death.

The study was conducted in accordance with the principles of the Declaration of Helsinki and the local ethics committee. All patients provided informed consent prior to participation in the study. Statistical analysis

Continuous variables are presented as mean \pm standard deviation (SD) and were compared using Welch's t-test. Categorical variables are presented as absolute and relative frequencies and were compared using Pearson's chi-squared test or Fisher's exact test, as appropriate.

The significance level (α) was established at 0.05, with p-values below this value considered statistically significant.

Univariate binary logistic regression was used to determine the association between cardiac decompensation and demographic, anthropometric, laboratory, echocardiographic, and CPET-derived parameters.

Variables with p < 0.05 from univariate analysis were selected for a multiple regression model. Due to multicollinearity among the numerous predictors, Lasso regression was employed using the glmnet package in R to determine the optimal model (22,23). The analysis involved standardizing the regressors to prevent scale-related biases. The patient cohort was randomly split into training and test sets. Five-fold cross-validation was used to identify the optimal lambda value, which was then used to obtain the final model coefficients. The model's predictive accuracy was subsequently evaluated on the unseen test set.

Statistical analysis was performed using R software, version 4.4.1 (R Foundation for Statistical Computing, Vienna, Austria; URL: https://www.R-project.org)

RESULTS

The final study group included 66 patients with exertional dyspnea, suspected of HFpEF, with a median age of 57 years (mean \pm standard deviation: 57 \pm 15 years), 65% of whom were male. All patients presented with dyspnea (NYHA class I-III) and had the following risk factors: obesity (38%), hypertension (79 %), a history of atrial fibrillation (AF) (11%), and diabetes (11%).

Among the 26 patients (39%) experiencing cardiac decompensation, 10 (15%) required HF medication adjustments (including loop diuretics) and had confirmed HFpEF, 9 (14%) were hospitalized for HFpEF, and 7 (11%) developed atrial fibrillation/flutter (EHRA II-IV). No deaths were reported.

Patients with cardiac decompensation were older, female, had a higher body mass index (BMI) and a greater prevalence of hypertension and history of AF, compared to those without. Diabetes prevalence did

not differ significantly. As expected, NT-proBNP was higher in the group with cardiac decompensation (Table 1).

Variable	Overall N = 66	Without cardiac decompensation $N = 40$	Cardiac decompensation $N = 26$	p-value ¹
Age, Mean (SD)	57 (15)	52 (16)	65 (10)	< 0.001
Sex, n (%)	,			< 0.001
F	23 (35)	5 (13)	18 (69)	
M	43 (65)	35 (88)	8 (31)	
Body mass index, kg/m², Mean (SD)	27.7 (4.6)	26.9 (4.7)	29.1 (4.1)	0.049
Comorbidities				
Hypertension, n (%)				0.005
Yes	52 (79)	27 (68)	25 (96)	
No	14 (21)	13 (33)	1 (4)	
Diabetes, n (%)				0.42
Yes	7 (11)	3 (7)	4 (15)	
No	59 (89)	37 (93)	22 (85)	
History of AF, n (%)		,	. ,	0.013
Yes	7 (11)	1 (2)	6 (23)	
No	59 (89)	39 (98)	20 (77)	
		, ,		
NT pro BNP, pg/ml, Mean (SD)	76 (33)	66 (34)	91 (25)	0.001
Medication	, ,	, ,	, ,	
Loop diuretics, n (%)				0.057
Yes	3 (5)	0 (0)	3 (12)	
No	63 (95)	40 (100)	23 (88)	
MRA, n (%)				0.42
Yes	7 (11)	3 (7)	4 (15)	
No	59 (89)	37 (93)	22 (85)	
Indapamide, n (%)	, ,			0.044
Yes	21 (32)	9 (23)	12 (46)	
No	45 (68)	31 (78)	14 (54)	
Beta blockers, n (%)	- (/	(/	ν- /	0.007
Yes	43 (65)	21 (53)	22 (85)	/
No	23 (35)	19 (48)	4 (15)	
Calcium channel blockers, n (%)	- ()	- (- ")	(/	0.050
Yes	19 (29)	8 (20)	11 (42)	3.023
No	47 (71)	32 (80)	15 (58)	
ACE inhibitors/ARB, n (%)	- , (, -)	3 - (00)	-5 (55)	0.22
Yes	45 (68)	25 (63)	20 (77)	0.22
No	21 (32)	15 (38)	6 (23)	
Statin, n (%)	21 (32)	15 (50)	0 (23)	0.070
Yes	42 (64)	22 (55)	20 (77)	0.070
No	24 (36)	18 (45)	6 (23)	
Antiplatelet therapies, n (%)	27 (30)	10 (73)	0 (23)	0.42
Yes	34 (52)	19 (48)	15 (58)	0.42
105	32 (48)	17 (40)	13 (30)	

 Table 1 - Patients' characteristics (1 Welch Two Sample t-test; Pearson's Chi-squared test; Fisher's exact test)

Beta blockers, calcium channel blockers, and indapamide were more frequently prescribed in the

cardiac decompensation group, however, no significant difference was observed in the use of loop

diuretics, mineralocorticoid receptor (MR) antagonists, angiotensin-converting enzyme (ACE) inhibitors/angiotensin II receptor blockers (ARBs), statins, or antiplatelet therapies (Table1).

Echocardiographic evaluation revealed significantly higher values for LAVI (p = 0.040) and resting and exercise E/e' ratio (p = 0.016, p < 0.001) in patients with cardiac decompensation. Conversely, this group showed significantly lower exercise LVEF (p = 0.030),

resting and exercise LA strain (p = 0.002, p < 0.001), exercise S'T (p = 0.004), and exercise S'/PASP (p = 0.029) compared to those without decompensation. No significant differences were observed between groups in left ventricle mass index (LVMI), resting LVEF, tricuspid annular plane systolic excursion (TAPSE), TAPSE/PASP ratio, S'T, S'T/PASP ration or PASP at rest or during effort (Table 2).

Echocardiography Variable	Overall N = 66	Without cardiac decompensation N = 40	Cardiac decompensation $N = 26$	p-value ¹
LVMI, g/m2, Mean (SD)	88 (21)	89 (21)	86 (22)	0.66
LAVI, ml/m2, Mean (SD)	30 (8)	29 (7)	33 (9)	0.040
E/e' rest, Mean (SD)	8.24 (2.13)	7.72 (1.91)	9.05 (2.23)	0.016
E/e' effort, Mean (SD)	12.5 (5.3)	10.0 (3.0)	16.3 (5.9)	<0.001
LVEF rest, %, Mean (SD)	57.7 (4.3)	58.2 (4.2)	56.8 (4.4)	0.19
LVEF effort, %, Mean (SD)	64.2 (8.8)	66.3 (5.6)	60.8 (11.6)	0.030
LA strain rest, %, Mean (SD)	28 (9)	30 (7)	23 (9)	0.002
LA strain effort, %, Mean (SD)	27 (9)	30 (8)	21 (8)	<0.001
PASP rest, mmHg, Mean (SD)	18 (8)	17 (7)	20 (9)	0.17
PASP effort, mmHg, Mean (SD)	34 (13)	32 (12)	36 (14)	0.20
TAPSE rest, mm, Mean (SD)	22.53 (3.29)	22.65 (3.50)	22.35 (2.98)	0.71
TAPSE/ PASP rest, mm/mmHg, Mean (SD)	1.46 (0.62)	1.52 (0.60)	1.35 (0.64)	0.28
S'T rest, cm/s, Mean (SD)	13.02 (1.91)	13.30 (1.83)	12.58 (1.98)	0.14
S'T effort, cm/s, Mean (SD)	16.4 (3.2)	17.3 (3.0)	15.0 (3.0)	0.004
S'T/PASP rest, cm/s per mmHg, Mean (SD)	0.84 (0.37)	0.89 (0.34)	0.77 (0.41)	0.21
S'T/PASP effort, cm/s per mmHg, Mean (SD)	0.55 (0.22)	0.60 (0.21)	0.48 (0.21)	0.029

¹ Welch Two Sample t-test

Table 2 - Echocardiographic variables of patients with and without cardiac decompensation

CPET demonstrated significant differences between groups. Patients with cardiac decompensation showed significantly lower values for VO2 at VAT (p < 0.001), peak VO2 (p < 0.001) and O2 pulse (peak VO2/HR, p=0.002); but significantly higher values for VE/VCO2 slope (p = 0.002), and resting and exercise partial pressure of end-tidal carbon dioxide

(Pet CO2) (p = 0.043, p = 0.034). No significant difference was found in % peak predicted VO2 (p= 0.31) and HR reserve (p= 0.073). Additionally, patients with cardiac decompensation demonstrated significantly lower values for OUES, maximum work rate, and circulatory power (p < 0.001 for all) (Table 3).

CPET Variable	Overall N = 66	Without cardiac decompensation $N = 40$	Cardiac decompensation N = 26	p-value
VO2 at VAT x10, (L/min) x10, Mean (SD)	7.78 (2.35)	8.61 (2.28)	6.49 (1.86)	< 0.001
PeakVO2, ml/kg/min, Mean (SD)	19.6 (6.0)	21.9 (6.1)	16.0 (3.8)	< 0.001
% predicted peak VO2, %, Mean (SD)	76 (16)	75 (16)	79 (15)	0.31
O2 pulse, ml O2/beat, Mean (SD)	11.64 (3.05)	12.58 (2.65)	10.19 (3.11)	0.002
HR Reserve, Mean (SD)	18 (12)	16 (11)	22 (12)	0.073
VE/VCO2 slope, Mean (SD)	30.3 (5.1)	28.7 (4.7)	32.6 (4.8)	0.002
Pet CO2 rest, mmHg, Mean (SD)	32.3 (3.7)	33.0 (3.7)	31.2 (3.5)	0.043
Pet CO2 effort, mmHg, Mean (SD)	38.2 (5.1)	39.2 (5.6)	36.7 (3.8)	0.034
OUES, (L/min), Mean (SD)	1.75 (0.49)	1.92 (0.45)	1.48 (0.43)	< 0.001
Max Work rate (Watts), Mean (SD)	122 (42)	140 (40)	94 (28)	< 0.001
Circulatory Power/10, (mmHg x ml/kg/min)/10, Mean (SD)	379 (141)	422 (145)	314 (107)	< 0.001

Table 3. The cardiopulmonary variables of patients with and without cardiac decompensation

Linear regression identified age, female sex, and NT-proBNP as predictors of cardiac decompensation (Table 4). Also, it revealed that the echocardiographic variables showing statistically significant differences between groups were also predictive of cardiac decompensation.

Linear regression analysis revealed that lower values of VO2 at VAT, peak VO2, O2 pulse, OUES, maximum work rate, and circulatory power, and higher VE/VCO2 slope predicted cardiac decompensation. Resting PetCO2 showed a trend towards significance (Table 4).

Predictor	N	Cardiac decompensation N	OR (95% CI) ¹	p-value
Age	66	26	1.08 (1.03 to 1.13)	0.002
Sex				
F	23	18	_	
M	43	8	0.06 (0.02 to 0.21)	<0.001
Body mass index	66	26	1.12 (1.00 to 1.27)	0.061
NT pro BNP	66	26	1.03 (1.01 to 1.05)	0.005
Echocardiographic predictors				
LVMI	66	26	0.99 (0.97 to 1.02)	0.649
LAVI	66	26	1.08 (1.01 to 1.17)	0.040
E/e' rest	66	26	1.37 (1.07 to 1.81)	0.017
E/e' effort	66	26	1.53 (1.27 to 1.96)	<0.001
LVEF rest	66	26	0.92 (0.81 to 1.04)	0.182
LVEF effort	66	26	0.88 (0.79 to 0.97)	0.017
LA strain rest	66	26	0.90 (0.84 to 0.96)	0.003
LA strain effort	66	26	0.86 (0.78 to 0.93)	<0.001
PAPS rest	66	26	1.05 (0.98 to 1.12)	0.156
PAPS effort	66	26	1.03 (0.99 to 1.07)	0.184
TAPSE rest	66	26	0.97 (0.83 to 1.13)	0.712
TAPSE/PAPS rest	66	26	0.63 (0.26 to 1.42)	0.274
S'T rest	66	26	0.81 (0.59 to 1.06)	0.137
S'T effort	66	26	0.76 (0.62 to 0.92)	0.007
S'T/PAPS rest	66	26	0.38 (0.08 to 1.54)	0.194
S'T/PAPs effort	66	26	0.05 (0.00 to 0.68)	0.033
CPET predictors				
VO2 at VAT x 10	66	26	0.58 (0.40 to 0.78)	0.001
PeakVO2	66	26	0.79 (0.67 to 0.89)	<0.001
% predicted peak VO2	66	26	1.02 (0.98 to 1.05)	0.316
O2 pulse	66	26	0.70 (0.54 to 0.87)	0.004
HR Reserve	66	26	1.04 (1.00 to 1.09)	0.071
VE/VCO2 slope	66	26	1.18 (1.06 to 1.33)	0.004
Pet CO2 rest	66	26	0.86 (0.74 to 0.99)	0.050
Pet CO2 effort	66	26	0.90 (0.79 to 1.00)	0.056
OUES	66	26	0.07 (0.01 to 0.29)	0.001
Max Work Rate (Watts)	66	26	0.96 (0.94 to 0.98)	<0.001
Circulatory Power / 10	66	26	0.99 (0.99 to 1.00)	0.004

Table 4 - Linear Regression Analysis for Predictors of Cardiac Decompensation (1 OR = Odds Ratio, CI = Confidence Interval)

Significant predictors (p-value < 0.05) from the univariate binary logistic regression were selected for the multiple regression model. Due to the high number of predictors and their correlations, Lasso regression was applied. The Lasso regression analysis identified three key predictors associated with cardiac decompensation: E/e' ratio at exercise, LA strain at exercise and Maximum Work Rate. LA strain at exercise and Maximum Work Rate (W) were negatively associated with the likelihood of cardiac decompensation, whereas exercise E/e' ratio showed a positive association.

- •An increase of 1 unit on the LA strain effort scale was associated with a 1% decrease in the odds of decompensation (coefficient: -0.009, OR: 0.99).
- •An increase of 1 unit on the Max Work Rate scale was associated with a 22% decrease in the odds of decompensation. (coefficient: -0.24, OR: 0.78)
- •An increase of 1 unit on the E/e' effort scale was associated with twofold increase in the odds of decompensation (coefficient: 0.71, OR: 2.03).

The model's performance was evaluated based on the confusion matrix from Table 5

	Without cardiac decompensation Real	With cardiac decompensation Real
Without cardiac decompensation Model	22	4
With cardiac decompensation Model	0	7

Table 5 – Confusion matrix

The model's accuracy was 87.87%, with a sensitivity of 63.63% and a specificity of 100%.

Additionally, the ROC analysis yielded an AUC of 0.818, reflecting the model's efficacy in differentiating between patients with and without cardiac decompensation (Figure 1).

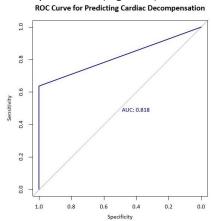


Figure 1 - ROC analysis

DISCUSSIONS

The diagnosis of HFpEF relies on the direct or indirect identification of elevated left ventricular (LV) filling pressures (9,16,24–26). In the early stages of HFpEF, these alterations may manifest only during exertion, with a significant number of patients exhibiting normal filling pressures at rest (27–29).

The E/e' ratio is the most established echocardiographic parameter used for the noninvasive estimation of LV filling pressures (6,9,25,30). However, previous studies have reported inconsistent findings regarding the accuracy of the E/e' ratio in estimating pulmonary capillary wedge pressure (PCWP). While some studies indicated a strong correlation between the E/e' ratio and elevated LV filling pressures (31–33) others reported only a moderate or no relationship between the E/e' ratio and invasive measurements (8,34–36).

Although the E/e' ratio has limitations in accurately estimating left ventricular (LV) filling pressures, it has been associated with outcomes such as mortality and composite endpoints in all 18 studies reviewed by Nauta and colleagues. Nonetheless, this association did not always reach statistical significance (37).

The results of our study are consistent with those from previous research concerning the E/e' ratio. Significant differences were found between patients with cardiac decompensation and those without, for both resting E/e' (p = 0.016) and E/e' during exertion (p < 0.001). Furthermore, univariate logistic regression analysis indicated that both resting E/e' (OR = 1.37, 95% CI: 1.07–1.81, p = 0.017) and E/e' during exertion (OR = 1.53, 95% CI: 1.27–1.96, p < 0.001) were predictive of cardiac decompensation in our cohort. However, Lasso regression analysis revealed that only the E/e' ratio during exertion remained a significant prognostic factor (coefficient = 0.71, OR = 2.03). In our cohort, patients with cardiac decompensation had a resting E/e' ratio of 9.05 ± 2.23, compared to 7.72 ± 1.91 in those without decompensation. This finding suggests that a considerable number of patients likely maintained normal filling pressures at rest. Additionally, an E/e' ratio within the intermediate range has demonstrated reduced sensitivity in identifying elevated mean pulmonary capillary wedge pressure (mPCWP). (9,38) These observations could explain why the resting E/e' ratio did not retain its predictive ability in the Lasso analysis of our study.

In patients with HFpEF, elevated filling pressures contribute over time to LA remodeling, a process driven by atrioventricular uncoupling and systemic inflammation (39,40).

LA volume, commonly quantified as LAVI using the biplane Simpson method, reflects the cumulative impacts of increased left ventricular (LV) filling pressure over time (16,41). However, its ability to detect early alterations in left ventricular diastolic dysfunction (LVDD) was limited, as LAVI primarily indicates the chronic consequences of prolonged elevated LV filling pressures (16,41). Nonetheless, in HFpEF patients, an increased LAVI has been identified as an independent predictor of death, heart failure, atrial fibrillation (AF), and ischemic stroke (16).

In our study, LAVI was significantly elevated in patients with cardiac decompensation compared to those without (33 \pm 5 vs. 29 \pm 6, p = 0.04). Moreover, it for demonstrated predictive value decompensation in our linear regression analysis (OR = 1.08, 95% CI: 1.01-1.17, p < 0.04); however, this predictive capability did not persist in the Lasso analysis. The LAVI values for patients with cardiac decompensation in our study were 33± 5 ml/m². These values are lower than those reported in other studies where LAVI demonstrated prognostic significance. Additionaly, a considerable number of patients with cardiac decompensation had values below the cutoff limit of 34 mL/m² recommended by clinical guidelines (6,30). This may explain the limited prognostic value of LAVI in our research.

Recent studies have indicated that a new functional parameter of the LA, LA strain, exhibits a stronger correlation with invasive gold standard diastolic measurements and LV filling pressures, surpassing LAVI in this aspect.(42-45) Additionally, LA strain provides a thorough evaluation of atrial function, remodeling, and distensibility, all of progressively deteriorate in patients with HFpEF.(42,46-48) This establishes LA strain a valuable tool in assessing the evolving pathophysiology of HFpEF.

Patients experiencing cardiac decompensation displayed significantly lower LA strain values compared to those without decompensation, both at rest (23 \pm 9 vs. 30 \pm 7, p = 0.02) and during exertion (21 \pm 8 vs. 30 \pm 8, p < 0.001), in the present study. Both resting and exertional LA strain demonstrated prognostic value in the linear regression analysis, with LA strain at rest yielding an odds ratio of 0.9 (95% CI: 0.84–0.94, p < 0.003) and exertional LA strain showing an odds ratio of 0.86 (95% CI: 0.78–0.93, p < 0.001). Notably, exertional LA strain retained its predictive ability even following Lasso analysis, with coefficients and odds ratio for exertional LA strain indicated as (coefficient = -0.009, OR = 0.99).

In our study, exertional LA strain demonstrated superior predictive capability for cardiac

decompensation compared to both LAVI and resting LA strain in patients suspected of having HFpEF. This finding indicates that LA strain during exercise may be more effective in detecting early alterations in the LA associated with elevated LV filling pressures than LAVI and resting LA strain in this patient population. Previous researches support this hypothesis, finding a significant correlation between LA strain and the severity of LVDD (49-53). The results of our study are consistent with those of Morris et al., who observed that a substantial proportion of patients with LV diastolic alterations had a normal LAVI but an abnormal LA strain (52). Furthermore, their study indicated that incorporating LA strain into the evaluation of LVDD markedly improved the detection rate of LVDD, reinforcing the concept that LA strain offers advantages over LAVI for earlier identification of diastolic changes (52).

Another study that supports these findings is Sugimoto's research, which examined the role of dynamic LA function in limiting oxygen consumption and cardiac output during exercise in HF patients. It found that reduced resting and exertional LA strain were both associated with poorer prognosis in HFpEF patients (54). Additionally, reduced exertional LA strain demonstrated superior discriminatory ability compared to LA strain at rest (54).

These findings suggest that exertional LA strain may have the potential to identify patients at greater risk for cardiac events in the early stages of HFpEF.

Other echocardiographic parameters in the present study that exhibited significant differences between the two groups and demonstrated predictive value for cardiac decompensation in linear regression analysis were LVEF, S'T, and S'T/PASP, all measured during exertion. However, these parameters lost their predictive value after Lasso analysis.

The ratio TAPSE/PASP has emerged as a reliable noninvasive index for assessing right ventricle (RV) to pulmonary circulation (PC) coupling and the overall RV performance in patients with HFpEF. (55–59) Additionally, recent studies have highlighted the utility of the S'T/PASP ratio for the same purpose.(60) However, Palazzuoli's study indicated that only S'/PASP had prognostic value in patients with acute HFpEF. In contrast, TAPSE/PASP was predictive in those with reduced EF, emphasizing the distinct patterns of RV adaptation and RV-PC coupling between the two groups (61).

The results of our study align with the aforementioned findings. Both TAPSE/PASP and S'T/PASP ratios at rest showed no statistically significant differences or predictive ability between the two groups. Notable differences were observed only

during exertion for parameters such as S'T and the S'T/PASP ratio. This may suggest an early stage of RV myocardial contractility impairment that becomes apparent during exercise, as indicated by the effort-related S'T measurements, especially since no significant differences were observed in PASP values at rest or during exertion between the groups.

Although most of the CPET variables were significant univariate predictors of cardiac decompensation among patients with suspicion of HFpEF in the present study (VO2 at VAT, Peak VO2, VO2 pulse, VE/VCO2 slope, OUES, Max Work Rate, and Circulatory Power), only maximum work rate retained predictive power for cardiac decompensation after Lasso analysis.

A significant number of studies have demonstrated the prognostic value of CPET in HF. Peak VO2 and VE/VCO2 slope are the parameters with the most substantial prognostic evidence in HFpEF, (15,62–64) with some studies showing an additional benefit for VE /VCO2 slope (62,65–67). The cut-off values used in these studies are lower for peak VO2 and higher for VE /VCO2 slope compared to the average values obtained in our study. This is likely the reason why these variables did not maintain their predictive value after the Lasso analysis.

A similar rationale likely applies to the other variables, including OUES and peak Circulatory Power, which lost their predictive value after Lasso regression. Even though Cohen's study identified peak Circulatory Power as the only independent predictor of outcome in patients with chronic HF, the findings in our study suggest a different context for early-stage HFpEF.(21) These results indicate a limited prognostic value of CPET variables in this patient population.

Our model, developed from the analysis of key predictors identified through Lasso regression (E/e' during effort, LA strain during effort, and maximum work rate), demonstrated high accuracy at 87.87%, alongside a sensitivity of 63.63% and a specificity of 100%. The ROC analysis further validated this, reporting an AUC of 0.818, which underscores the model's effectiveness in distinguishing between patients with and without cardiac decompensation. While the model exceled at correctly identifying patients without decompensation (true negatives), its ability to accurately detect all patients with decompensation (true positives) remained somewhat limited. These findings suggest that future studies, by incorporating refinements or additional predictors, could enhance the model's sensitivity and improve the identification of patients at risk for cardiac decompensation among those suspected of having HFpEF.

The small sample size may limit the generalizability of the findings, as a larger cohort could provide a more robust assessment of the prognostic value of CPET- ESE parameters in patients with suspected HFpEF.

CONCLUSIONS

Our study underscores the importance of integrating echocardiographic and cardiopulmonary exercise testing (CPET) parameters in the assessment of patients with suspected HFpEF. ESE proved to be a valuable tool for evaluating prognosis and risk stratification in patients with chronic exertional dyspnea and suspected HFpEF. The inclusion of LA strain at exercise significantly enhanced the predictive value of the classic echocardiographic parameter, the E/e' ratio at exercise. Additionally, adding maximum work rate further enhanced the prognostic accuracy of the model. While CPET parameters demonstrated some predictive potential, their added benefit for risk stratification in the early stages of HFpEF remains limited. However, the CPET test remains an important tool in evaluating patients with exertional dyspnea, allowing for the differentiation between various types of exertional dyspnea. This was not applicable in our study due to the exclusion of patients with known causes of dyspnea, such as pulmonary impairment.

References

- [1] Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med [Internet]. 2006 Jul 20 [cited 2025 Jan 31];355(3):251–9. Available from: https://pubmed.ncbi.nlm.nih.gov/16855265/
- [2] Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of Disease Pathogenesis and Risk Factors to Heart Failure With Preserved or Reduced Ejection Fraction. Circulation. 2009 Jun 23;119(24):3070–7.
- [3] van Riet EES, Hoes AW, Wagenaar KP, Limburg A, Landman MAJ, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016 Mar 4;18(3):242–52.
- [4] Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction. Circulation. 2016 Jul 5;134(1):73–90.

- [5] Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction. Circulation. 2015 Jan 20;131(3):269-79.
- [6] Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail. 2016 Aug 20;18(8):891-975.
- [7] Del Buono MG, Arena R, Borlaug BA, Carbone S, Canada JM, Kirkman DL, et al. Exercise Intolerance in Patients With Heart Failure: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019 May 7;73(17):2209-25. [8] Obokata M, Kane GC, Reddy YNV, Olson TP, Melenovsky V, Borlaug BA. Role of Diastolic Stress Testing in the Evaluation for Heart Failure with Preserved Ejection Fraction: A Simultaneous Invasive-Echocardiographic Study. Circulation. 2017 Feb 28;135(9):825-38.
- [9] Pieske B, Tschöpe C, De Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Vol. 40, European Heart Journal. Oxford University Press; 2019. p. 3297-317.
- [10] J L, NM A, JP B, SP C, JA E, MM G, et al. HFSA 2010 Comprehensive Heart Failure Practice Guideline. J Card Fail [Internet]. 2010 [cited 2025 Feb 1];16(6):e1. Available from: https://pubmed.ncbi.nlm.nih.gov/20610207/
- [11] Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, et al. Research Priorities for Heart Failure with Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation [Internet]. 2020 Mar 24 [cited 2025 Feb 1];141(12):1001–26. Available from: https://www.ahajournals.org/doi/10.1161/CIRCULATI
- [12] Saito Y, Obokata M, Harada T, Kagami K, Wada N, Okumura Y, et al. Prognostic benefit of early diagnosis with exercise stress testing in heart failure with preserved ejection fraction. Eur J Prev Cardiol. 2023 Jul 12;30(9):902-11.
- [13] Pugliese NR, De Biase N, Gargani L, Mazzola M, Conte L, Fabiani I, et al. Predicting the transition to and progression of heart failure with preserved ejection fraction: a weighted risk score using bio-humoural, cardiopulmonary, and echocardiographic stress testing. Eur J Prev Cardiol. 2021 Dec 29;28(15):1650-61.

- [14] Martens P, Herbots L, Timmermans P, Verbrugge FH, Dendale P, Borlaug BA, et al. Cardiopulmonary Exercise Testing with Echocardiography to Identify Mechanisms of Unexplained Dyspnea. J Cardiovasc Transl Res. 2022 Feb 10;15(1):116-30.
- [15] Naito A, Kagami K, Yuasa N, Harada T, Sorimachi H, Murakami F, et al. Prognostic utility of cardiopulmonary exercise testing with simultaneous exercise echocardiography in heart failure with preserved ejection fraction. Eur J Heart Fail. 2024 Dec 6;26(12):2582-90.
- [16] Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography. Apr;29(4):277-314.
- [17] Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):233-71.
- [18] Badano LP, Kolias TJ, Muraru D, Abraham TP, Aurigemma G, Edvardsen T, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018 Jun 1;19(6):591–600.
- [19] Magne J, Lancellotti P, Piérard LA. Exercise-Induced Changes in Degenerative Mitral Regurgitation. J Am Coll Cardiol. 2010 Jul;56(4):300-9.
- [20] Hansen JE, Sue DY, Wasserman K. Predicted Values for Clinical Exercise Testing 1- 3. American Review of Respiratory Disease. 1984 Feb;129(2P2):S49-55.
- [21] Cohen-Solal A. A non-invasively determined surrogate of cardiac power ('circulatory power') at peak exercise is a powerful prognostic factor in chronic heart failure. Eur Heart J. 2002 May 15;23(10):806-14. [22] Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010;33(1).

Technology and Innovation in Life Sciences ISSN: 2821-6792

ONAHA.119.041886

- [23] Tay JK, Narasimhan B, Hastie T. Elastic Net Regularization Paths for All Generalized Linear Models. J Stat Softw. 2023;106(1).
- [24] Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011 Mar 2;32(6):670–9.
- [25] Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007 Oct;28(20):2539–50.
- [26] Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail [Internet]. 2018 Sep 1 [cited 2025 Feb 1];20(9):1303–11. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ejhf. 1220
- [27] Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010 Sep;3(5):588–95.
- [28] Andersen MJ, Olson TP, Melenovsky V, Kane GC, Borlaug BA. Differential Hemodynamic Effects of Exercise and Volume Expansion in People With and Without Heart Failure. Circ Heart Fail. 2015 Jan;8(1):41–8.
- [29] Maron BA, Cockrill BA, Waxman AB, Systrom DM. The Invasive Cardiopulmonary Exercise Test. Circulation. 2013 Mar 12;127(10):1157–64.
- [30] McDonagh TA, Metra M, Adamo M, Baumbach A, Böhm M, Burri H, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Vol. 42, European Heart Journal. Oxford University Press; 2021. p. 3599–726.
- [31] Talreja DR, Nishimura RA, Oh JK. Estimation of Left Ventricular Filling Pressure with Exercise by Doppler Echocardiography in Patients with Normal Systolic Function: A Simultaneous Echocardiographic—Cardiac Catheterization Study. Journal of the American Society of Echocardiography. 2007 May; 20(5):477—9.

- [32] Burgess MI, Jenkins C, Sharman JE, Marwick TH. Diastolic Stress Echocardiography: Hemodynamic Validation and Clinical Significance of Estimation of Ventricular Filling Pressure With Exercise. J Am Coll Cardiol. 2006 May;47(9):1891–900.
- [33] Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler Tissue Imaging: A Noninvasive Technique for Evaluation of Left Ventricular Relaxation and Estimation of Filling Pressures. J Am Coll Cardiol. 1997 Nov;30(6):1527–33.
- [34] Maeder MT, Thompson BR, Brunner-La Rocca HP, Kaye DM. Hemodynamic Basis of Exercise Limitation in Patients With Heart Failure and Normal Ejection Fraction. J Am Coll Cardiol. 2010 Sep;56(11):855–63.
- [35] Bhella PS, Pacini EL, Prasad A, Hastings JL, Adams-Huet B, Thomas JD, et al. Echocardiographic Indices Do Not Reliably Track Changes in Left-Sided Filling Pressure in Healthy Subjects or Patients With Heart Failure With Preserved Ejection Fraction. Circ Cardiovasc Imaging. 2011 Sep;4(5):482–9.
- [36] Santos M, Rivero J, McCullough SD, West E, Opotowsky AR, Waxman AB, et al. E/e' Ratio in Patients With Unexplained Dyspnea. Circ Heart Fail. 2015 Jul;8(4):749–56.
- [37] Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2018 Sep 7;20(9):1303–11.
- [38] Sharifov OF, Schiros CG, Aban I, Denney TS, Gupta H. Diagnostic Accuracy of Tissue Doppler Index E/è for Evaluating Left Ventricular Filling Pressure and Diastolic Dysfunction/Heart Failure With Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2016 Jan 13;5(1).
- [39] Omote K, Verbrugge FH, Borlaug BA. Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annu Rev Med. 2022 Jan 27;73(1):321–37.
- [40] Pfeffer MA, Shah AM, Borlaug BA. Heart Failure With Preserved Ejection Fraction In Perspective. Circ Res. 2019 May 24;124(11):1598–617.
- [41] Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. Journal of the American Society of Echocardiography. 2009 Feb;22(2):107–33.

[42] Cameli M, Sparla S, Losito M, Righini FM, Menci D, Lisi M, et al. Correlation of Left Atrial Strain and Doppler Measurements with Invasive Measurement of Left Ventricular End-Diastolic Pressure in Patients Stratified for Different Values of Ejection Fraction. Echocardiography. 2016 Mar 23;33(3):398–405.

[43] Cameli M, Lisi M, Mondillo S, Padeletti M, Ballo P, Tsioulpas C, et al. Left atrial longitudinal strain by speckle tracking echocardiography correlates well with left ventricular filling pressures in patients with heart failure. Cardiovasc Ultrasound. 2010 Dec 21;8(1):14.

[44] Wakami K, Ohte N, Asada K, Fukuta H, Goto T, Mukai S, et al. Correlation between Left Ventricular End-diastolic Pressure and Peak Left Atrial Wall Strain during Left Ventricular Systole. Journal of the American Society of Echocardiography. 2009 Jul;22(7):847–51.

[45] Kurt M, Tanboga IH, Aksakal E, Kaya A, Isik T, Ekinci M, et al. Relation of left ventricular end-diastolic pressure and N-terminal pro-brain natriuretic peptide level with left atrial deformation parameters. Eur Heart J Cardiovasc Imaging. 2012 Jun;13(6):524–30.

[46] Obokata M, Negishi K, Kurosawa K, Arima H, Tateno R, Ui G, et al. Incremental Diagnostic Value of LA Strain With Leg Lifts in Heart Failure With Preserved Ejection Fraction. JACC Cardiovasc Imaging. 2013 Jul;6(7):749–58.

[47] Santos ABS, Kraigher-Krainer E, Gupta DK, Claggett B, Zile MR, Pieske B, et al. Impaired left atrial function in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014 Oct 19;16(10):1096–103.

[48] Santos ABS, Roca GQ, Claggett B, Sweitzer NK, Shah SJ, Anand IS, et al. Prognostic Relevance of Left Atrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail. 2016 Apr;9(4).

[49] Khan UA, de Simone G, Hill J, Tighe DA, Aurigemma GP. Depressed Atrial Function in Diastolic Dysfunction: A Speckle Tracking Imaging Study. Echocardiography. 2013 Mar 12;30(3):309–16.

[50] Brecht A, Oertelt-Prigione S, Seeland U, Rücke M, Hättasch R, Wagelöhner T, et al. Left Atrial Function in Preclinical Diastolic Dysfunction: Two-Dimensional Speckle-Tracking Echocardiography—Derived Results from the BEFRI Trial. Journal of the American Society of Echocardiography. 2016 Aug;29(8):750—8.

[51] Singh A, Addetia K, Maffessanti F, Mor-Avi V, Lang RM. LA Strain for Categorization of LV Diastolic Dysfunction. JACC Cardiovasc Imaging. 2017 Jul;10(7):735–43.

[52] Morris DA, Belyavskiy E, Aravind-Kumar R, Kropf M, Frydas A, Braunauer K, et al. Potential Usefulness

and Clinical Relevance of Adding Left Atrial Strain to Left Atrial Volume Index in the Detection of Left Ventricular Diastolic Dysfunction. JACC Cardiovasc Imaging. 2018 Oct 1;11(10):1405–15.

[53] Reddy YNV, Obokata M, Egbe A, Yang JH, Pislaru S, Lin G, et al. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction. Eur J Heart Fail [Internet]. 2019 Jul 1 [cited 2025 Feb 1];21(7):891–900. Available from: https://pubmed.ncbi.nlm.nih.gov/30919562/

[54] Sugimoto T, Barletta M, Bandera F, Generati G, Alfonzetti E, Rovida M, et al. Central role of left atrial dynamics in limiting exercise cardiac output increase and oxygen uptake in heart failure: insights by cardiopulmonary imaging. Eur J Heart Fail. 2020 Jul 1;22(7):1186–98.

[55] Guazzi M, Dixon D, Labate V, Beussink-Nelson L, Bandera F, Cuttica MJ, et al. RV Contractile Function and its Coupling to Pulmonary Circulation in Heart Failure With Preserved Ejection Fraction. JACC Cardiovasc Imaging. 2017 Oct;10(10):1211–21.

[56] Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, et al. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. American Journal of Physiology-Heart and Circulatory Physiology. 2013 Nov 1;305(9):H1373–81.

[57] Gorter TM, van Veldhuisen DJ, Voors AA, Hummel YM, Lam CSP, Berger RMF, et al. Right ventricular-vascular coupling in heart failure with preserved ejection fraction and pre- vs. post-capillary pulmonary hypertension. Eur Heart J Cardiovasc Imaging. 2018 Apr 1;19(4):425–32.

[58] Ghio S, Guazzi M, Scardovi AB, Klersy C, Clemenza F, Carluccio E, et al. Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail. 2017 Jul 17;19(7):873–9.

[59] Nakagawa A, Yasumura Y, Yoshida C, Okumura T, Tateishi J, Yoshida J, et al. Prognostic Importance of Right Ventricular-Vascular Uncoupling in Acute Decompensated Heart Failure With Preserved Ejection Fraction. Circ Cardiovasc Imaging. 2020 Nov;13(11).

[60] Chen Z, Chung Y, Cheng J, Huang C, Chen S, Lin L, et al. Right Ventricular-Vascular Uncoupling Predicts Pulmonary Hypertension in Clinically Diagnosed Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc. 2024 Jan 2;13(1).

[61] Palazzuoli A, Cartocci A, Pirrotta F, Vannuccini F, Campora A, Martini L, et al. Different right ventricular dysfunction and pulmonary coupling in acute heart failure according to the left ventricular ejection fraction. Prog Cardiovasc Dis. 2023 Nov 1;81:89–97. [62] Guazzi M, Myers J, Arena R. Cardiopulmonary

[62] Guazzi M, Myers J, Arena R. Cardiopulmonary exercise testing in the clinical and prognostic assessment of diastolic heart failure. J Am Coll Cardiol. 2005 Nov 15;46(10):1883–90.

[63] Shafiq A, Brawner CA, Aldred HA, Lewis B, Williams CT, Tita C, et al. Prognostic value of cardiopulmonary exercise testing in heart failure with preserved ejection fraction. the Henry Ford HospITal CardioPulmonary EXercise Testing (FIT-CPX) project. Am Heart J. 2016 Apr 1;174:167–72.

[64] Houstis NE, Eisman AS, Pappagianopoulos PP, Wooster L, Bailey CS, Wagner PD, et al. Exercise

Intolerance in Heart Failure With Preserved Ejection Fraction. Circulation. 2018 Jan 9;137(2):148–61.

[65] Lee K, Jung JH, Kwon W, Ohn C, Lee M, Kim DW, et al. The prognostic value of cardiopulmonary exercise testing and HFA-PEFF in patients with unexplained dyspnea and preserved left ventricular ejection fraction. Int J Cardiol. 2023 Sep 1;386:74–82.

[66] Ho JE, Zern EK, Wooster L, Bailey CS, Cunningham T, Eisman AS, et al. Differential Clinical Profiles, Exercise Responses, and Outcomes Associated With Existing HFpEF Definitions. Circulation. 2019 Jul 30;140(5):353–65.

[67] Arena R, Myers J, Guazzi M. The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review. Heart Fail Rev. 2008 Jun 7;13(2):245–69.